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Abstract

Animal pose estimation(APE) can boost the understanding of
animal behaviors. Vision-based animal pose estimation has
attracted extensive attention in the past few years due to the
advantages of contactless and senseless. The main challenge
for this task is the lack of labeled data. Existing works cir-
cumvent this problem with pseudo labels generated from data
of other easily accessible domains such as synthetic data.
However, these pseudo labels are noisy. To address this prob-
lem, We use human pose data from the COCO keypoint de-
tection dataset since humans share skeleton similarities with
some animals. Since there are some domain gap between the
human pose data and animal pose data, we further introduce
the domain adaptation method to this problem. Meanwhile,
with the widespread use of transformers in computer vision
and the emergence of some large-scale and well-labeled ani-
mal datasets recently, we have been inspired to apply the vi-
sion transformer in the APE task. Consequently, we combine
the vision transformer and cross-domain method to improve
the accuracy and generalization ability of our model. We eval-
uate our approach on the AP-10K and Animal-Pose datasets.
Experiments show that our proposed method can achieve con-
vincing results on animal pose estimation.

Introduction
Animal pose estimation aims to predict the locations of an-
imal body parts and joints from images or videos. APE has
received increasing attention from scholars over the last few
years. Parsing animal posture can help to promote the un-
derstanding of animal behaviors, which is the foundation of
some disciplines such as biomechanics, neuroscience, and
behavior. For the APE task, we need to detect the keypoint
of the main parts of the animals and then output the location
parameters of the keypoint. The image is preprocessed, then
used as the input of the pose estimation module to perform
feature extraction and fusion in the pose and keypoint pre-
diction. Next, through the post-processing module the final
output is the keypoint information of the animal.

In our work, we design our method from two perspectives.
The first is to improve the feature extraction ability of the
backbone network, and the second is to increase the animal
species generalization ability of the model.
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Convolutional neural network has become the dominant
method for most visual tasks since 2012. However, with
the advent of more efficient structures and convergence of
computer vision and natural language processing, using the
transformer for visual tasks(Dosovitskiy et al. 2020) has
become a new research direction which can achieve bet-
ter performance than CNNs. And the purpose of the trans-
former is to reduce the complexity of the structure, and ex-
plore scalability and training efficiency. ViTPose(Xu et al.
2022) recently has achieved the best results for human pose
estimation. Specifically, ViTPose employs plain and non-
hierarchical vision transformers as backbones to extract fea-
tures for a given person instance and a lightweight decoder
for pose estimation. However, to the best of our knowledge,
there is no attempt to apply transformer backbone to APE
task until now. In this paper, in a bid to achieve better ac-
curacy and generalization ability, we apply the vision trans-
formers to APE task.

Although human pose estimation has made great progress
in recent years, due to the lack of large annotated animal
datasets and the existence of animal species diversity, di-
rectly transfer human pose estimation algorithms to animal
datasets usually fails to achieve good accuracy and general-
ization capabilities. To solve this problem, most of the ex-
isting methods adopt the cross-domain approach(Cao et al.
2019; Mu et al. 2020; Li et al. 2021), that is, we can transfer
knowledge from other more readily available domains such
as human data to the real target domain.

We evaluate our approach on the AP-10K and Animal-
Pose datasets. Experiments show that our proposed method
can achieve convincing results. Conclusively, the main con-
tributions of our work are as below:

• We design a simple but efficient encoder and decoder
structure based on vision transformer, which consists of a
feature extractor, a domain discriminator and a keypoint
estimator.

• We propose a joint learning strategy and cross-domain
method which can transfer knowledge from human do-
main to real animal domain to achieve better accuracy
and generalization ability.

• Our approach achieves state-of-the-art results on the AP-
10K dataset and the Animal-Pose dataset, verifying the
effectiveness of our proposed approach.



Figure 1: Pipeline of our model. Lines with color describe the flow of features along different paths. Specifically, the red
line represents the flow of animal data, and the green line represents the flow of human data. ”DDL” indicates the domain
discrimination loss. ”APEL” and ”HPEL” indicate animal/human pose estimation loss respectively. The cooperation of keypoint
estimator and domain discriminator does not just improves the pose estimation capacity on pose-labeled samples but also forces
the model to gain this through better extracting and leveraging common features shared by pose-labeled and pose-unlabeled
samples.

Related Work
Human pose estimation
Human pose estimation aims at predicting the poses of hu-
man body parts from images or videos. Since pose motions
are often driven by some specific human actions, knowing
the body pose of a human is critical for action recogni-
tion. One of the early approaches(Sapp, Jordan, and Taskar
2010) is the pictorial structure which uses a tree structure to
model the spatial relationships among body parts. However,
these methods do not perform well in complex scenarios be-
cause of the limited representation capabilities. In the past
few years, the rise of deep neural models(Newell, Yang, and
Deng 2016; Xiao, Wu, and Wei 2018; Sun et al. 2019) based
on CNN has improved the results but brings data hunger to
develop a high-powered model. Recently, Xu et al.(Xu et al.
2022) applied the vision transformer in human pose estima-
tion and achieved good results.

Animal pose estimation
Animal pose estimation is relatively under-explored com-
pared to human pose estimation mainly due to the lack of la-
beled data. To solve this problem, Cao et al.(Cao et al. 2019)
propose a cross-domain adaptation scheme to learn a shared
feature space between human and animal images such that
their network can learn from existing human pose datasets.
They also select pseudo labels into the training based on the
confidence score. Mu et al.(Mu et al. 2020) use synthetic an-
imal data generated from CAD models to train their model,
which is then used to generate pseudo labels for the unla-
beled real animal images. Domain adaptation becomes very
difficult when domains face severe domain shift and no ex-
tra information is available to align feature representation

on different domains. We propose a cross-domain method
for animal pose estimation based on vision transformer.

Our Method
Recently, most visual tasks has experienced rapid develop-
ment from CNNs to the vision transformer networks. Trans-
former has been used in the human pose estimation (Xu et al.
2022) with competitive performance. In this paper, we first
use the vision transformer structure to propose a simple yet
effective baseline model for animal pose estimation. Due
to the lack of pose-labeled animal datasets, we randomly
sample 10K samples from the MS COCO Keypoint Detec-
tion dataset for training with the AP-10K animal dataset to-
gether to train a strong representational encoder backbone.
Then we design two decoders to estimate the heatmaps of
the keypoints. But there exists domain shift between the
source domain and target domain, so we further design a
simple and efficient cross-domain method to solve this prob-
lem. Specifically, we add a domain discriminator which is a
fully-convolutional architecture to reduce the domain gap.
Our model architecture is shown in Figure1. In the follow-
ing section we will describe our approach in detail.

Vision Transformer Architecture
Inspired by the great success of ViTPose in human pose es-
timation, we expect to use this structure in our work. Con-
cretely, we use the encoder based on the vision transformer
to extract features of the input images. And for the decoder
part, we use simple bilinear layer and a prediction layer, as
in(Xiao, Wu, and Wei 2018).

Encoder As Figure 2 shown, our encoder consists of sev-
eral transformer blocks. Specifically, given an animal in-
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Figure 2: (a) The framework of Encoder. (b) The transformer block

stance image X ∈ RH×W×3 as input, Our model first em-
beds the images into tokens via a patch embedding layer
F ∈ RH

d ×W
d ×C , where d equal to 16 by default, and C

is the channel dimension. After that, the embedded tokens
are processed by several transformer layers, each of which
is consisted of a multi-head self-attention(MHSA) layer and
a feed-forward network(FFN), i.e.,

F ′
i+1 = Fi +MHSA (LN (Fi)) (1)

Fi+1 = F ′
i+1 + FFN

(
LN

(
F ′
i+1

))
(2)

where i represents the output of the ith transformer layer
and the initial feature F0 = PatchEmbed(X) denotes the fea-
tures after the patch embedding layer. According to the orig-
inal design of the vision transformer, the spatial and chan-
nel information of each block input and output remains un-
changed, so the output of the final encoder can be expressed
as Fout ∈ RH

d ×W
d ×C .

Decoder As to the decoder, to minimize time consump-
tion, we use two simple decoders to process the human or
animal features extracted from the backbone network and
localize the keypoints.

D
e
c
o
n
v

B
N

R
e
L
U

D
e
c
o
n
v

B
N

R
e
L
U

P
re
d
ic
to
r

B
il
in
e
a
r

R
e
L
U

P
re
d
ic
to
r

(a) (b)

Figure 3: (a) The classic decoder. (b) The simple decoder.

As shown in Figure 3, (a) is a classic decoder, which is
composed of two deconvolution blocks. Each of the block
contains one deconvolution layer followed by batch normal-
ization(Ioffe and Szegedy 2015) and ReLU (Agarap 2018),
Following the common setting of previous methods(Zhang,
Chen, and Tao 2021), each block upsamples the feature
maps by 2 times. Then, a convolution layer with the ker-
nel size 1 × 1 is utilized to get the localization heatmaps for
the keypoints.

K = Conv1×1 (Deconv (Deconv (Fout ))) (3)

Apart from this, as Figure 3 (b) shown, we try to use an-
other simpler decoder in our methods, thanks to the strong
representation ability of the vision transformer backbone,
this decoder also is proved effective. Specifically, we di-
rectly upsample the feature maps by 4 times with bilinear
interpolation, followed by a ReLU and a convolution layer
with the kernel size 3 × 3 to get the heatmaps, i.e.,

K = Conv3×3 ( Bilinear (ReLU (Fout ))) (4)

Joint learning It is worth mentioning that the data is
mixed during the training process. We randomly sample in-
stances from multiple training datasets for each iteration and
feed them into the backbone and the different decoders to es-
timate the heatmaps corresponding to each dataset. Animal
Pose Estimation Loss(APEL) and Human Pose Estimation
Loss (HPEL), the loss function of HPEL and APEL respec-
tively and are usually both mean-square error. The overall
loss for pose estimation is as follows,

Lpose =

N∑
i=1

(w2yiLA (Ii) + (1− yi)LH (Ii)) (5)

where LH and LA indicate loss function of HPEL and
APEL respectively, w2 is weighting factor to alleviate the
effect of dataset volume gap. To overcome the imbalance be-
tween human samples and animal samples, w2 should be set
to a larger value, otherwise model tends to perform almost
equivalent to only trained on human samples.

Cross Domain Method
As Figure 1, to bridge the domain gap between the source
and target domains, we train a domain discriminator to clas-
sify the obtained features, which is a fully-convolutional
network. The domain discriminator attempts to classify the
real target data from the synthetic source data using a
cross-entropy loss to construct the domain discrimination
loss(DDL):

LDDL =− w1

N∑
i=1

(yi log (ŷi) + (1− yi) log (1− ŷi))

−
N∑
i=1

yi (zi log (ẑi) + (1− zi) log (1− ẑi))

(6)



where yi indicates whether xi is a human or animal
sample(yi = 1 for animals and yi = 0 for human); zi indi-
cates whether xi comes from the target domain (zi = 1 if it
is pose-unlabeled sample and otherwise zi = 0). ŷi and ẑi are
predictions by the domain discriminator. w1 is a weighting
factor.

Total Loss Functions
The losses of domain discriminator and keypoint estimator
are set to be adversarial. As pose estimation is the main task,
the domain discriminator serves for domain confusion dur-
ing feature extraction. Through this design, the model is
expected to perform better on pose-unlabeled samples by
leveraging better features that are shared on domains. The
total loss of the model is formulated as:

Ltotal = αLDDL + βLpose (7)

Since domain discriminator and keypoint estimator are
adversarial, so we need to set α ∗ β < 0, which encour-
aging domain confusion and boosting pose estimation per-
formance at the same time. In the experiments, we set α =
1, β = −0.002.

Experiment
Datasets
AP-10K The dataset(Yu et al. 2021) is the first large-scale
benchmark for mammal animal pose estimation, which con-
sists of 10,015 images collected and filtered from 23 ani-
mal families and 54 species following the taxonomic rank
and high-quality keypoint annotations labeled and checked
manually. We train our model on the AP-10K dataset. The
definition of the skeleton shown in table 1.

MS COCO Keypoint Detection The COCO dataset(Lin
et al. 2014)contains over 200, 000 images and 250, 000 per-
son instances labeled with 17 keypoints. We randomly sam-
ple 10K samples from the MS COCO Keypoint Detection
dataset for training with the animal dataset together.

Animal-Pose Dataset This dataset(Cao et al. 2019)con-
tains annotations for five animal categories:dog, cat, horse,
sheep and cow. 5,517 instances of these 5 categories are dis-
tributed in more than 3,000 images. We use this dataset to
test the generalization capacity of our model.

Table 1: The definition of the skeleton joint in quadrupeds.

Keypoint Definition Keypoint Definition
0 Left Eye 9 Right Elbow
1 Right Eye 10 Right Front Paw
2 Nose 11 Left Hip
3 Neck 12 Left Knee
4 Root of tail 13 Left Back Paw
5 Left Shoulder 14 Right Hip
6 Left Elbow 15 Right Knee
7 Left Front Paw 16 Right Back Paw
8 Right Shoulder

Implementation Details
Experimental Settings We benchmark several represen-
tative pose estimation frameworks with different CNN back-
bone networks based on the MMPose codebase (Contribu-
tors 2020). Two A100 GPUs with 40GB memory is used
during both the training and testing for all the experiments.
Our backbones are initialized with MAE(He et al. 2022)
pre-trained weights. We use the 256 × 256 input resolution
and AdamW(Reddi, Kale, and Kumar 2019) optimizer with
a learning rate of 5e-4. Udp(Huang et al. 2020)is used for
post-processing. The models are trained for 210 epochs with
a learning rate decay by 10 at the 170th and 200th epoch.

Metrics
Average Precision and Recall Scores In the basic exper-
iment part we use standard evaluation metric which is based
on Object Keypoint Similarity (OKS):

OKS =

∑
i exp(−d2i /2s

2K2
i )δ(υi > 0)∑

i δ(υi > 0)
(8)

where di is the Euclidean distance between the detected
keypoint and the corresponding ground truth, vi is the visi-
bility flag of the ground truth, s is the object scale, and ki is
a per-keypoint constant that controls falloff. We report stan-
dard average precision and recall scores: AP(the mean of
AP scores at 10 positions, OKS = 0.50, 0.55,..., 0.90, 0.95),
AP 50(AP at OKS = 0.50); AR at OKS = 0.50, 0.55,..., 0.90,
0.955, AR50(AR at OKS = 0.50).

Percentage of Correct Keypoints (PCK) We adopt the
percentage of correct keypoints (PCK) as the evaluation met-
ric in generalization test. PCK measures the accuracy be-
tween the predicted joint location and the true joint location.

PCKk
i =

∑
p δ

(
dpi

ddef
p

≤ Tk

)
∑

p 1
(9)

where i denote ith keypoint in image, Tk denotes kth
threshold, range from 0 to 1, p denote pth target, dpi denote
the distance between predicted and ground truth of ith key-
point for target p, ddefp denote the scale factor of pth target.
In this work Tk is 0.05 and ddefp is the size of heatmap.

Quantitative Analysis
Comparison with the methods based on CNNs We
compared the HRNet and SimpleBaseline on the AP-10K
dataset, as shown in Table 2.We can see that our method
outperforms the previous convolutional methods by a large
margin. Specifically, at both 256x256 image resolutions, our
approach achieved 77.12% AP and 80.32% AR.

Ablation Study To verify the contribution of our pro-
posed joint-learning and cross-domain module respectively,
we conduct the ablation study. In Table 3, ”JL” means that
we use joint-learning module for training on COCO dataset
and AP-10K dataset. We can find that AP and AR score
have decreased. We analyze that this is because there are
some domain gap between human pose data and the ani-
mal pose data. ”CD” means adding the domain discrimintor.



Figure 4: Competitive results on AP-10K dataset and Animal-Pose dataset.

Table 2: Comparison with HRNet and SimpleBaseline on the AP-10K test set.

Model Backbone Params(M) Resolution AP AP 50 AR AR50

HRNet HRNet-w32 28.54 256x256 72.46 94.24 75.81 94.95
HRNet HRNet-w48 63.59 256x256 72.95 94.28 76.28 95.04

SimpleBaseline ResNet50 33.99 256x256 67.96 91.92 71.68 92.88
SimpleBaseline ResNet101 52.99 256x256 68.25 92.01 71.78 92.95

Ours ViT-B 104.08 256x256 77.12 96.24 80.32 97.12

Compared with only using ViT, our method with JL moudle
and CD moudle has improved by 1.14% AP and 1.06% AR,
which verified the effectiveness of our cross-domain method
when we try to use joint-learning.

Table 3: Ablation study of joint-learning(JL) and cross-
domain(CD).

ViT JL CD AP AP 50 AR AR50

✔ 75.98 95.42 79.26 96.11
✔ ✔ 75.22 95.72 78.71 96.31
✔ ✔ ✔ 77.12 96.24 80.32 97.12

Generalization tests on Animal-Pose Dataset Table 4
shows that other cross-domain methods perform poorly on
the unseen species like dog, cat and sheep. Our method per-
form the best on the five categories which indicates that our
method has top-performing generalization abilities.

Qualitative Analysis
Visualization Figure 4 shows some competitive results on
AP-10K dataset and Animal-Pose dataset. It can be seen that
the results of our method are accurate and have good gener-
alization, which can accurately predict the keypoints for a
variety of animals with different poses.

Table 4: PCK@0.05 accuracy for the generalization com-
pared with CC-SSL and UDA on Animal-Pose test dataset.

Horse Dog Cat Sheep Cow Mean

CC-SSL 65.35 30.27 15.05 52.39 63.71 47.6
UDA 72.84 42.48 27.65 59.51 71.31 56.77
Ours 86.86 77.01 69.36 79.11 88.26 81.53

Conclusion
In this paper, we propose an approach for cross-domain
animal pose estimation based on vision transformer. We
changed the backbone network for extracting features from
the traditional convolutional network to a visual transformer,
which can achieve very good performance. In addition, in or-
der to approach the problem of insufficient animal datasets
and the diversity of animal species, we propose a frame-
work for joint training of multiple datasets, that is, to per-
form mixed training on human pose data and animal pose
data. At the same time, to bridge the gap between different
domains, we introduce a domain classifier to narrow the gap
between the human domain and the animal domain, result-
ing the model insensitive to species, with stronger general-
ization ability and robustness. In the future, we will further
explore different domain generalization methods on larger
datasets to better improve the performance of the model.
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